

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIE	NCE
QUALIFICATION CODE: 07BOSC	LEVEL: 7
COURSE CODE: ACS701S	COURSE NAME: APPLIED COLLOID AND SURFACE CHEMISTRY
SESSION: JUNE 2019	PAPER: THEORY
DURATION : 3 HOURS	MARKS: 100

	FIRST OPPORTUNITY EXAMINATION QUESTION PAPER
EXAMINER(S)	Prof Habauka M. Kwaambwa
MODERATOR:	Prof Edet F. Archibong

	INSTRUCTIONS	
1.	Answer ALL the questions.	
2.	Write clearly and neatly.	
3.	Number the answers clearly.	

PERMISSIBLE MATERIALS

Non-programmable Calculators

ATTACHMENT

List of Useful Constants

THIS QUESTION PAPER CONSISTS OF 6 PAGES (Including this front page and List of Useful Constants)

QUESTION 1 [23]

(a) Colloids can be described in terms size, dispersed phase/dispersion medium, and lyophilic or lyophobic colloids. Write briefly about this statement. (5)

- (b) Surfactants are classified according to the type of the hydrophilic group. In many respects, the aqueous behaviour of dodecybetaine is closer to octyl poly(oxyethylene) glycol (Triton X-100) than to hexadecyltrimethylammonium bromide. Explain or discuss this statement.
- (c) Water treatment Moringa seed proteins are cationic. Arrange in increasing order of interaction of the following surfactants with Moringa seed proteins and explain briefly your answer:

Cetylpyridinium bromide; Polyoxyethylene alkyl ether, and; Sodium dodecyl sulphate. Explain your answer. (4)

- (d) There is a variety of physical properties that can be used to determine the critical micelle concentration (CMC) of a surfactant such as sodium dodecyl sulphate (SDS). On the same diagram, show the variation of the following physical quantities with SDS concentration, showing clearly the position of the CMC: (4)
 - (i) Osmotic pressure
 - (ii) Turbidity
 - (iii) Surface tension
- (e) Explain briefly the observed behaviours in (d) above.

QUESTION 2 [27]

(6)

- (a) Define the terms **solubilisation**, **Krafft temperature**, **T**_K, and **cloud point** as used in colloid chemistry. (6)
- (b) The cloud point for TX-100 was studied as function temperature. What would you observe if the same experiment was done using sodium dodecyl sulphate (SDS)? (2)
- (c) Using well-labelled schematic diagrams illustrate how (i) solubilisation varies with surfactant concentration, and; (ii) how solubility of surfactants with temperature indicating clearly the position T_K and critical micelle concentration. (7)
- (d) State whether the critical micelle concentration (CMC) would **increase**, **decrease** or **not change** after the following changes: (5)
 - (i) Changing the surfactant from $CH_3(CH_2)_9(OCH_2CH_2)_5OH$ to $CH_3(CH_2)_7(OCH_2CH_2)_5OH$
 - (ii) Increasing the temperature
 - (iii) Addition of electrolyte to an ionic surfactant
 - (iv) Presence of impurity when CMC is determined by surface tension
 - (v) Branching of the hydrophobic part of the surfactant

(e) A Moringa shower gel formula has the following components:

Identification	Component	
Α	Water	
В	SDS 30%	
С	Coconut diethanolamide	
D	Alkyl amido propyl betaine 30%	
E	Cocoamine oxide	
F	NaCl	
G	Perfume, colour, preservative	
Н	Lactic acid	
J	Moringa seed oil	

Match each of the following functions to corresponding letter (A-J) of the components in the table above: (7)

- (i) Increases thickness by causing the surfactant to restructure into the high viscosity cylindrical micelle structures
- (ii) Anionic surfactant
- (iii) Thought to be a component of the skin and used to the pH compatible with that of the skin, i.e. adjust pH to 6.5
- (iv) Antiaging and antifungal component
- (v) Amphoteric surfactant to generate foam or cold water detergent
- (vi) Nonionic surfactant that imparts excellent viscosity enhancing and foam stabilisation in anionic based systems
- (vii) Foam booster surfactant

QUESTION 3 [12]

- (a) Outline any **three** main assumptions involved in the derivation of the BET adsorption isotherm equation for molecules at the gas/liquid interface. (3)
- (b) The linear BET equation is of the form:

$$\frac{p}{V(p_o - p)} = \frac{1}{V_m c} + \frac{(c - l)}{V_m c} \frac{p}{p_o}$$

- (i) State what each of the quantities in this equation represents. (4)
- (ii) A graphical plot of $\frac{p}{V(p_o p)}$ against $\frac{p}{p_o}$ data for the adsorption of nitrogen

gas on 1 g of sample of alumina at 77 K gave a slope of 2.88×10^{-2} cm⁻³ (s.t.p.) and an intercept of 9.87×10^{-4} cm⁻³ (s.t.p.). Calculate the specific surface area (m²g⁻¹) for the alumina sample, taking the molecular area of nitrogen as 16.2×10^{-20} m². (5)

QUESTION 4 [20]

- (a) Compare and contrast the following terms as used in colloid stability: (6)
 - (i) Sedimentation and Creaming
 - (ii) Depletion flocculation and Bridging flocculation
- (b) Explain how the following factors would affect the stability of colloidal dispersions.

(6)

- (i) Brownian motion
- (ii) Increase in particle size of colloidal particles
- (iii) Decrease in medium viscosity
- (c) Define the terms point of zero charge and potential determining ions. As a Colloid Scientist, use/apply these concepts to explain why AgI particles are negatively charged and how you can manipulate them so that you have a dispersion with zero charged AgI particles and another with positively charged AgI particles. (6)
- (d) Apart from the above mechanism in (c), **isomorphous substitution** is another mechanism particles acquire charge. Deduce the resulting charge of clay particles if metal X (valency = 4⁺) replaces metal M (valency = 3⁺)? (2)

QUESTION 5 [18]

(a) One form of the van Waals interaction potential between two particles is given by:

$$V_A(h) = -\frac{Aa}{12h}$$

- (i) State any two conditions under which this equation is valid. (2)
- (ii) Briefly state the effect on V_A if the particles are immersed in medium instead particles instead of particles in a vacuo? (1)
- (iii) What effect on V_A is observed if the Hamaker constant of the medium approaches that of the particles? (1)
- (b) Using combining relations based on the Hamaker constants of pure materials (A_i), calculate the composite Hamaker constants for the following interacting systems:
 - (i) Polystyrene in water; (ii) SiO₂ in water, and; (iii) Polyestyrene-Water-SiO₂
 - Comment on the results with respect colloid stability of the systems. (3)

Given:

Material	A _i x 10 ⁻²⁰ J
Polystyrene	7.2
SiO ₂	0.8
Water	4.1

(c) On the same well-labelled diagram, show schematically the variation of the van der Waals attraction potential (V_A) , electrostatic potential (V_R) and total pair potential $(V_T = V_A + V_R)$ with the interparticle separation, h, for a **marginally stable** dispersion of nanoparticles indicating clearly the positions, if any, of primary minimum, primary maximum, secondary minimum and Born repulsion potential (V_B) .

END OF EXAM QUESTIONS

USEFUL CONSTANTS:

Universal Gas constant 8.314 J K⁻¹ mol⁻¹ R 1.381 x 10⁻²³ J K⁻¹ Boltzmann's constant, k $6.626 \times 10^{-34} \text{ J s}$ Planck's constant h $0.509 \text{ (mol dm}^{-3})^{1/2} \text{ or mol}^{-0.5} \text{kg}^{0.5}$ Debye-Huckel's constant, A = 96485 C mol⁻¹ Faraday's constant F 9.109 x 10⁻³¹ kg Mass of electron me 2.998 x 10⁸ m s⁻¹ Velocity of light С 6.022×10^{23} Avogadro's constant

Avogadro's constant $N_A = 6.022 \times 10^{23}$ 1 electron volt (eV) = $1.602 \times 10^{-19} \text{ J}$

6